Par Véronique Bertrand - Ingénieure génie climatique et énergétique pour Xpair
Voici un guide sur le développement du photovoltaïque en France élaboré par des chercheurs et des chercheuses du Centre National de la Recherche Scientifique (CNRS) et de la Fédération de Recherche Photovoltaïque (FedPV).
L’objectif : Travailler collectivement sur les questions posées par le développement du solaire photovoltaïque en France. Quelle est sa réalité ? Où en est-on ? Quels sont les objectifs à court, moyen et long terme ? Sont-ils atteignables ? Le photovoltaïque coûte-t-il cher ? Est-il polluant, émetteur de CO2, dépendant de matériaux rares ? ...
Le solaire photovoltaïque en France : réalité, potentiel et défis
Différents scénarios énergétiques sont ainsi à l'étude pour parvenir à une neutralité carbone en 2050.
Ils nécessitent tous une société plus sobre en énergie, une plus grande électrification des usages énergétiques en parallèle d’un développement des énergies renouvelables.
La question de base est : quelle place le solaire photovoltaïque peut-il prendre dans le futur mix énergétique français ?
Voici un résumé de 25 questions-réponses pour démêler le vrai du faux dont tous les détails figurent dans un guide de 48 pages disponible ci-dessous et également sur le site Solaire PV.
Pour en savoir plus sur les réponses détaillées, téléchargez le Guide de 48 pages de Mars 2022.
Téléchargez le Guide PV – Mars 2022
Qu'est-ce qu'un panneau photovoltaïque (PV) ?
Un panneau photovoltaïque (PV) est un dispositif qui permet de transformer le rayonnement solaire en électricité.
Quelle est la contribution du PV solaire à la production électrique française ?
En 2021, le solaire PV a fourni 14,3 TWh, soit 3% de l'énergie électrique consommée en France (contre 2,8% en 2020).
En dix ans (2011-2021), la puissance du parc photovoltaïque installé en France a été multipliée par 5 pour atteindre aujourd’hui 13,2 GW, et la production d’énergie solaire a été multipliée par 6 avec 14,3 TWh en 2021.
Le PV a ainsi permis de couvrir 3% de la consommation électrique en 2021, contre 2,8% en 2020. Ce taux de couverture annuel atteint 10,8% en Corse, et respectivement 8,8 et 7,9% sur les régions Nouvelle-Aquitaine et Occitanie. Par comparaison, la puissance du parc éolien installé en 2021 était de 18,8 GW, pour une production électrique annuelle de 36,8 TWh, soit 7,8% de l’électricité annuelle consommée en 2021 (contre 17 GW, 39,7 TWh, et 8,8% en 2020).
NB : les chiffres diffèrent légèrement selon les sources.
Quel est le coût d'une installation PV ?
Cela dépend de la taille de l’installation. Une grande centrale au sol coûte environ 0,7 €/W, contre 2 €/W pour une installation résidentielle. Note : 2 €/W correspond environ à 400 €/m² avec les technologies actuelles.
La brique de base d’une installation photovoltaïque est le module. Son coût est exprimé en €/W. Grâce aux progrès techniques et à des effets d’échelle, ce coût a connu une forte diminution, de 2,1 €/W en 2010 à 0,2 €/W en 2020, soit une division par 10 en 10 ans !
Néanmoins, une installation photovoltaïque, ce n'est pas que des modules. Il faut aussi de la main d’oeuvre pour les installer, un onduleur et des éléments électriques pour l’interconnexion avec le réseau. Une installation complète est donc plus chère. Son coût diminue également, mais pas aussi vite que celui des modules. En 2019 en France, une installation résidentielle en toiture coûtait autour de 2 €/W, une centrale au sol de taille moyenne 0,7 €/W.
Exemple pour un particulier d'une installation de 30m² de panneaux PV sur un toit de maison individuelle en 2022 :
• Puissance nominale : 6 kW.
• Coût d’installation : environ 12 000 € (sans subvention)
• Électricité produite par an : 7 800 kWh
• Au prix du kWh actuel (~0,15 €), cette installation sera rentabilisée en ~10 ans
• Consommation annuelle d’une maison hors chauffage : ~5000 kWh
Le solaire PV est-il compétitif ?
Oui, le solaire PV est maintenant compétitif par rapport aux autres sources d'énergie électrique, avec des coûts allant de 0,05 €/kWh pour une centrale au sol à 0,16 €/kWh pour une petite toiture résidentielle.
Le coût de l'électricité d'une installation PV dépend fortement du type et de la taille de l'installation. L'installation d'une grande centrale au sol coûte beaucoup moins cher en main d'oeuvre que l'installation de la même puissance sur des toitures complexes d'accès.
La figure ci-dessous présente le résultat de deux études récentes basées sur le cycle de vie des installations. Le coût de l'électricité d'origine PV issue d'une installation au sol est du même ordre de grandeur que le nucléaire existant ou l'éolien terrestre, autour de 0,05 €/kWh.
A noter : Les données Greenpeace – Institut Rousseau sont spécifiques à la France, tandis que celles de l'IEA et le NEA prennent en compte plusieurs pays. Les modes de calculs ne sont pas tout à fait équivalents. La Cour des Comptes a proposé fin 2021 des évaluations des coûts, et discute également des méthodologies de calcul et des limites de ces évaluations.
Quelles sont les émissions de CO2 d'un système PV ?
Une installation PV sur toiture à base de panneaux en silicium monocristallin émet en moyenne 30 gCO2eq/kWh. Les émissions ont lieu essentiellement au moment de la fabrication des panneaux (71%).
Pour analyser les émissions d'une installation photovoltaïque, il faut tenir compte non seulement des émissions du module PV, mais aussi des autres éléments du système tels que l'onduleur. Pour des installations avec injection sur le réseau (sans batterie), les émissions sur le cycle de vie d'une installation PV en France sont de l'ordre de ~30 gCO2eq/kWh selon les études les plus récentes (46 gCO2eq/kWh), soit environ 25 fois moins que les centrales fonctionnant au pétrole (de l'ordre de ~800 gCO2eq/kWh).
Ces émissions sont majoritairement dues au procédé de fabrication, et notamment à la phase de raffinement du silicium, qui est chauffé à plus de 1 500°C pendant environ 36h. Le bilan carbone des installations PV sera progressivement amélioré par l'augmentation de la part des énergies renouvelables dans le mix énergétique alimentant les usines.
Quel est l'impact de la filière PV sur l'emploi en France ?
La filière solaire PV française représente environ 8 000 emplois (équivalent temps plein) en 2020, en hausse de 5,6% par rapport à 2019.
On estime que la filière photovoltaïque représentait 8 000 emplois en 2020 (en équivalent temps plein). On peut voir sur la figure ci-dessous qu'un pic d'activité a eu lieu en 2010-2011, porté par les installations individuelles et les tarifs d'achats. Ceux-ci ont ensuite fortement diminué, suivi d'un net recul de l'emploi, avant une nouvelle croissance plus régulière depuis 2016. Dans le détail, plus de la moitié de ces emplois concernent l'installation des systèmes photovoltaïques, suivi de l'exploitation et la vente de l'énergie, puis de la fabrication des équipements.
Adapter le réseau au nouveau mix énergétique à l'horizon 2050 ... à quel coût ?
L'intégration massive d'énergies renouvelables nécessitera de nouveaux moyens de flexibilité. D'ici 2035, on estime que les outils existants ou déjà prévus seront suffisants. Au-delà, de nouvelles installations seront nécessaires et engendreront un surcoût. Celui-ci peut être estimé en développant des scénarios pour les mix énergétiques futurs.
Le solaire photovoltaïque est une énergie intermittente dont la production n'est pas en parfaite adéquation avec la consommation. La complémentarité avec d'autres sources d'énergies, comme l'éolien, permet d'atténuer partiellement ce problème. Néanmoins, avec l'accroissement des énergies renouvelables, des moyens d'adaptation seront nécessaires : sources d'énergies non-renouvelables et pilotables, stockage, flexibilité de la demande. RTE estime que nous disposons de moyens suffisants jusqu'à l'intégration de 50% d'énergies renouvelables, suivant la PPE jusqu'en 2035.
Au-delà, des moyens de flexibilité supplémentaires seront nécessaires et génèreront un surcoût qui dépend du mix énergétique. Le développement de scénarios futurs permet de les évaluer, malgré de fortes incertitudes, voire des paris technologiques.
RTE a ainsi estimé les coûts complets à l’horizon 2050 dans différents scénarios. Ce coût complet est estimé à 80 Md€/an pour un mix 100% renouvelables, et 60 Md€/an pour un mix reposant à parts égales sur les renouvelables et le nucléaire. Le rapport explore également différentes variantes. Par exemple le coût d’un réseau 100% renouvelable, basé prioritairement sur de grandes centrales, serait de 70 Md€/an.
Infographie
1 000 W/m² - En France, en milieu d’une journée d’été, la puissance du rayonnement solaire est d’environ 1 000 W/m² (1 kW/m²).
1 300 kWh/an/m² - Cette puissance lumineuse varie au cours de l’année en fonction des saisons et des conditions météorologiques et de l’heure. L’énergie lumineuse annuelle reçue par unité de surface est d’environ 1 300 kWh/an/m².
~15% Facteur de charge - Une autre manière de tenir compte des variations d’éclairement au fil de l’année, ainsi que de l’alternance jour/nuit, est de définir le facteur de charge d’une installation, qui est d’environ 0,15 pour le solaire PV en France. C’est le rapport entre l’énergie réellement reçue par une surface durant 1 an (=8 760 h) et l’énergie fictive qui serait reçue par cette même surface si elle était en plein soleil pendant 8 760 h.
~20% Rendement - Les modules photovoltaïques (ou panneaux) sont le plus souvent constitués de cellules de silicium connectées entre elles et protégées par une plaque de verre. Leur efficacité, ou rendement de conversion de l’énergie lumineuse en énergie électrique, est d’environ 20%. Un module d’une surface d’1 m² éclairé par une puissance de 1 000 W/m² fournit donc une puissance électrique nominale de 200 W (on parle également de puissance crête de 200 Wc).
260 kWh/an/m² - L’énergie électrique produite pendant une année est équivalente à celle obtenue avec la puissance nominale pendant 15% des 8 760 heures d’une année, soit 200x0,15x8760 = 263 kWh/m², qui correspond bien à 20% de l’énergie lumineuse reçue par m².
Exemple
Commentaires
En France, en milieu d’une journée d’été, la puissance du rayonnement solaire est d’environ 1 000 W/m² (1 kW/m²).
Cette puissance lumineuse varie au cours de l’année en fonction des saisons et des conditions météorologiques et de l’heure. L’énergie lumineuse annuelle reçue par unité de surface est d’environ 1 300 kWh/an/m².
Une autre manière de tenir compte des variations d’éclairement au fil de l’année, ainsi que de l’alternance jour/nuit, est de définir le facteur de charge d’une installation, qui est d’environ 0,15 pour le solaire PV en France. C’est le rapport entre l’énergie réellement reçue par une surface durant 1 an (=8 760 h) et l’énergie fictive qui serait reçue par cette même surface si elle était en plein soleil pendant 8 760 h. L’énergie électrique produite pendant une année est équivalente à celle obtenue avec la puissance nominale pendant 15% des 8 760 heures d’une année, soit 200x0,15x8760 = 263 kWh/m², qui correspond bien à 20% de l’énergie lumineuse reçue par m².
Les modules photovoltaïques (ou panneaux) sont le plus souvent constitués de cellules de silicium connectées entre elles et protégées par une plaque de verre. Leur efficacité, ou rendement de conversion de l’énergie lumineuse en énergie électrique, est d’environ 20%. Un module d’une surface d’1 m² éclairé par une puissance de 1 000 W/m² fournit donc une puissance électrique nominale de 200 W (on parle également de puissance crête de 200 Wc)
L’énergie électrique produite pendant une année est équivalente à celle obtenue avec la puissance nominale pendant 15% des 8 760 heures d’une année, soit 200x0,15x8760 = 263 kWh/m², qui correspond bien à 20% de l’énergie lumineuse reçue par m².
Par Véronique Bertrand - Ingénieure génie climatique et énergétique – Consultante XPair
Source et lien
Merci pour ces informations